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Outline

Day 1: intro to phonological issues

Day 2: intro to Bayesian inference

Day 3: arguments for and against Bayesianism

Day 4-5: applications to phonology
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Spoiler alert

This class will not have much to say about which theory of phonology is correct.

Our goals:

● introduce the basic disagreement between substance-free phonology and 
other theories

● introduce the Bayesian worldview
● look at issues in phonological theory through a Bayesian lens

4



Introduction

Today’s goals:

● introduce substance-free phonology
● introduce evolutionary phonology
● look at a concrete example
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Asymmetries in phonetic substance

Not all surface phonetic patterns are equally common:

● final devoicing >> final voicing
● place assimilation >> place dissimilation
● voiced sonorants >> voiceless sonorants
● oral vowels >> nasal vowels
● f >> θ

The basic disagreement between substanceful and substance-free theories of 
phonology: how do we account for this?
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‘Markedness’

A few different kinds of phonological asymmetry have been grouped together 
under the name ‘markedness’. Marked segments...

● ...have low frequency within a language
● ...have low frequency across languages
● ...have a more restricted distribution within a language
● ...are acquired later in infancy
● ...are more likely to be impaired in cases of aphasia.

(Haspelmath 2006, Jakobson 1941)
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‘Markedness’

Empirically, it seems to be true that these things correlate.

● Gordon (2014): within-language frequency correlates with across-language 
frequency.

● Romani et al. (2017): both age of acquisition and probability of impairment 
in aphasia correlate with both kinds of frequency.
○ And the correlation with across-language frequency holds independent 

of within-language frequency.
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Formal markedness

Traditionally, markedness has been treated as a subject for theoretical 
phonologists:

● Prague School structuralism (Jakobson, Trubetzkoy)
● SPE markedness statements (Chomsky, Halle)
● OT markedness constraints (Prince, Smolensky)

In each of these cases, we’re building formal markedness into our theory of 
mental representations.

But why?
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Analytic bias v channel bias

Two kinds of causal explanation for a sound pattern:

1. Analytic bias – facts about the language faculty;
e.g. formal markedness, learning bias

2. Channel bias – facts about the transmission process.
e.g. articulation, perception

In each individual case, either an analytic bias or a channel bias (or both) could be 
at work.
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A constraint: the Gulf
All explanations in theoretical linguistics have to contend with the Gulf. Learners 
only have indirect access to the adult grammar.

UR   →   SR    ⇢ ⇢ ⇢ ⇢ ⇢ UR
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SFP and EP

My view is that there’s a explanatory division of labour between:

1. Substance-free phonology (SFP) as an account of representations

and

2. Evolutionary phonology (EP) as an account of substance

This isn’t normally put quite this explicitly in SFP circles.
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Substance-free phonology

Hale and Reiss (2008) make two separate claims about what it means for 
phonology to be “substance-free”:

1. Mental symbols are not the same as muscle movements or sound waves.

2. The phonological component of the grammar isn’t constrained to 
recapitulate the properties of muscle movements and sound waves.

(i.e. there is no formal markedness)

My view: 1 is trivial. 2 is interesting.
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Evolutionary phonology

Blevins (2004): the typological frequency of a pattern needn’t be built into the 
grammar. Among other things, it’s also a function of:

● the frequency of sound changes that create it
● the frequency of sound changes that destroy it

Explaining typological patterns becomes a job for phoneticians and historical 
phonologists, not (only) synchronic theoretical phonologists.
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Classic example: final devoicing

For example: German, Russian, Turkish, Wolof, Ojibwe and other languages have 
final devoicing.

The reverse, final voicing, is rare or unattested. Why the asymmetry?
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Typological aside
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OT on final devoicing

Classic Optimality Theory says there is a constraint *D]σ, but no constraint *T]σ.

So grammars with final voicing are representationally impossible.

This is an example of formal markedness: building typological patterns into the 
space of representationally possible grammars.
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EP on final devoicing

Evolutionary phonology says there are phonetic pressures that diachronically 
lead to final devoicing, but not to final voicing:

● voicing is aerodynamically difficult without a following vowel (Westbury and 
Keating 1986)

● the glottis tends to close before a following pause (Cho et al. 2019)
● final stops tend to lengthen, which is a cue to voicelessness (Wightman et al. 

1992).

All this is consistent with final voicing being representationally possible but 
unlikely to appear in a real language.

18



A response to EP

But Kiparsky (2006) points out there are more complicated routes to (something 
like) final devoicing under EP:

● final degemination followed by tt > t and t > d
○ (batt > bat > bad, but batta > bata)

● medial voicing followed by apocope
○ (bata > bada > bad)

● post-nasal voicing plus cluster simplification and deletion
○ (banta > banda > bada > bad, but bata > bata)

So what rules these out?
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Probabilities and sound change

Kiparsky’s point is a quantitative one.

Working out whether the data support an analytic bias (OT), or a channel bias 
(SFP/EP) is a complicated game of probabilities.

Beguš (2020) tries to bootstrap sound change probabilities from a database of 
sound changes, and finds support for the channel bias view of final devoicing.
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Some lessons

1. Theoretical phonologists can’t escape probabilities.

Even without any randomness inside the grammar, there is uncertainty about the 
process that produces the grammars we see.

2. Theoretical phonology can’t take place in a vacuum.

Our evidence about the world’s languages is the product of a jumble of 
processes – we can’t do theoretical phonology without trying to disentangle 
them.
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Probability in science

The Bayesian view is that everything in science is a game of probabilities.

(Except for 2 + 2 = 4?)

Probabilities are a way of capturing our uncertainty about the world beyond 
textbook settings like coin tosses and die rolls.

The relationship between a theory and the data is very complicated, but there 
are still lessons to learn from a Bayesian perspective.
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Tomorrow

Day 2:

● the central idea: Bayes’ rule
● what Bayes’ rule means in practice
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Day 2
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A general problem

We have a set of theories.
(Logical Phonology, Optimality Theory, MaxEnt…)

We have data.
(written grammars, corpora, speaker judgements, experimental data…)

What do the data tell us about our theories?
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Bayesianism

Bayesianism is a framework for reasoning about evidence. It has a static part 
and a dynamic part.

Static: represent our uncertainty as a probability distribution over states 
of the world.

Dynamic: update this distribution as new evidence comes in according to 
Bayes’ rule.
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Probability

P(A) means “the probability that A is true”.

P(B|C) means “the probability that B is true, given that C is true”.

P(D&E) means “the probability that D and E are both true”.

All probabilities are real numbers between 0 and 1, and probabilities of mutually 
exclusive events are additive.
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Examples of probability

For example:
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Examples of probability

For example:

● P(die rolls a 6) =
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Examples of probability

For example:

● P(die rolls a 6) = ⅙
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = 
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) =
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓

● P(die rolls a 3 | the sun is shining) =
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓

● P(die rolls a 3 | the sun is shining) = ⅙
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓

● P(die rolls a 3 | the sun is shining) = ⅙

● P(die rolls a 4 & die rolls a 5) =
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Examples of probability

For example:

● P(die rolls a 6) = ⅙

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓

● P(die rolls a 3 | the sun is shining) = ⅙

● P(die rolls a 4 & die rolls a 5) = 0
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The chain rule

There is a relationship between conditional probabilities and joint 
probabilities called the chain rule:

P(A&B) = P(A|B) ⨉ P(B)

● P(die rolls an even number) = ½ 

● P(die rolls a number divisible by 3 | die rolls an even number) = ⅓

● P(die rolls a 6) = ⅙
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Bayes’ rule

The dynamic part of Bayesianism is encoded in an equation called Bayes’ rule.

P(A|B) = P(B|A) ⨉ P(A) / P(B)

The probability of A given B is:

● the probability of B given A
● multiplied by the ratio of the probabilities of A and B

This follows from the chain rule.
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Bayesian inference

Bayes’ rule lies at the heart of inference problems.

Say we have data D and want to know what this tells us about a hypothesis H.

If we know how likely the data are given the theory…

…then Bayes’ rule tells us how likely the theory is given the data.
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Example

We see that the ground outside is wet (the data).

Did it rain overnight (the theory)?

P(it rained | ground is wet)
= P(ground is wet | it rained) ⨉ P(it rained) / P (ground is wet)
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Some terminology

The probability P(H) of the hypothesis before looking at the data is called a 
prior.

The probability P(H|D) of the hypothesis given the data is called a posterior.

The probability P(D|H) of the data given a hypothesis is called a likelihood.

Bayes’ rule says: posterior ∝ prior ⨉ likelihood
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Example

Thinking in terms of ratios of probabilities means we can ignore the prior P(D):

P(H|D) / P(¬H|D)
=

P(D|H) / P(D|¬H)
⨉

P(H) / P(¬H)

Bayes’ rule converts the prior odds into the posterior odds through a 
likelihood ratio.
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Forwards and backwards

We can think of Bayes’ rule as converting “forward” (or “generative”) 
probabilities like P(D|H) into “backward” (or “inverse”) probabilities like P(H|D).

In general:

● we’re uncertain about hypothesis H
● there is some kind of generative process in the world that, if H is true, 

produces data D with probability P(D|H)
● we observe data D

In situations like this, Bayes’ rule tells us how to work “backwards” to reach 
P(H|D), telling us how likely H is given the data.

45



Two images

Two mental images that might help with the intuitions behind Bayesian 
inference:

1. Cutting the cake
2. Adjusting the scales
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Cutting the cake

Our space of hypotheses is like a cake.

When we learn data D, we perform Bayesian inference by cutting out all parts 
of the cake inconsistent with D.

Everything else is left in the same ratio as before.
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Adjusting the scales

Learning data D adjusts the 
balance of probability 
between H and ¬H.

If D adjusts H downward, it 
automatically adjusts ¬H 
upward and vice versa.
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Adjusting the scales

All that matters is which of 
P(D|H) and P(D|¬H) is bigger.

P(D|H) is bigger:
D is evidence for H

P(D|¬H) is bigger:
D is evidence against H

P(D|H) = P(D|¬H):
D says nothing about H
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The likelihood principle

The only way that data D can give us information about a hypothesis H is 
through the likelihoods P(D|H) and P(D|¬H).

This is called the likelihood principle (Berger and Wolpert 1988).

The key question for theoretical phonologists: would we be more likely to see 
the data if your theory is true than if your theory is false?
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Tomorrow

Day 3:

● assumptions behind Bayesianism
● arguments that statements about uncertainty should obey those 

assumptions
● challenges for Bayesianism
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Day 3
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Why Bayes?

We’ve seen the basic machinery of Bayesian inference at work.

But why think this has anything to do with scientific uncertainty?
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Probabilism

Bayes’ rule itself is a trivial bit of algebra.

What’s more at issue is probabilism: the philosophical view that statements 
about uncertainty should follow the laws of probability in the first place.
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Probability as “extended logic”

We normally teach probability in a restricted way as a theory of chance, with 
examples from random processes like coin tosses and die rolls.

Bayesianism uses probability in a different and more general way: as a kind of 
extended logic.

● Propositional logic: normative reasoning under certainty
● Probability theory: normative reasoning under uncertainty
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Interpretations of probability

There are lots of different systems that obey the laws of probability:

● long-run frequencies
● physical propensities/chances
● areas on a Venn diagram
● mod-squared amplitudes in quantum mechanics
● statements of uncertainty (according to probabilism)

No single one of these is “the interpretation” of probability.

(What is “the interpretation” of y = x2?)
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Arguments for probabilism

A general strategy we’ll see today:

● give a set of conditions it would seem unreasonable for statements of our 
uncertainty about the world not to obey

● show that those conditions imply the laws of probability

A result like this is called a representation theorem: “if a system obeys 
conditions ABC, it’s isomorphic to some other object D”.
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Arguments for probabilism

1. The Fernandez argument
2. The Dutch book argument
3. The scoring rule argument
4. Cox’s theorem
5. Savage’s representation theorem
6. The complete class theorems
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1. The Fernandez argument

An intuitive argument that puts some metaphysics behind the cutting-the-cake 
procedure (Fernandez 2020):

1. There is a set of ways the world could be (“possible worlds”).
2. When we learn D, we rule out all the worlds where D is false.
3. The relative plausibility of all other worlds is unchanged, so they all become 

uniformly more plausible.

This is equivalent to cutting and rescaling the space of possible worlds: giving 
us Bayesian inference.
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2. The Dutch book argument

A “Dutch book” is a combination of odds and bets that guarantees a win for the 
bookmakers whatever happens. For example:

● pay $1.50 now
● win $1 if it rains tomorrow
● win $1 if it doesn’t rain tomorrow

Ramsey (1926), de Finetti (1931): you are vulnerable to Dutch books if and only if 
your distribution of uncertainty violates the laws of probability.
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3. The scoring rule argument

Forecasters are often judged by scoring rules that compare their forecasts over 
time to reality. For example:

“Tomorrow it will rain with probability 70%”
If rain: win 1–(1–0.7)2 = 0.91 points
If no rain: win 1–0.72 = 0.51 points

de Finetti (1974):  if your forecasts violate the laws of probability, they are 
dominated by another set of forecasts that wins more points whatever happens.
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4. Cox’s theorem

Cox (1946) lays out three axioms about the “plausibility” of a claim:

1. plausibility is always a real number

2. “and” is compositional in a particular way: p(A∧B) = g(p(A), p(B|A))

3. “not” is compositional: p(¬A) = –f(p(A))

If these axioms hold for some nondecreasing functions f and g, then we can 
convert each plausibility into a probability between 0 and 1.
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5. Savage’s representation theorem

Savage (1954): if our (revealed) preferences over states of the world:

1. … are complete and don’t form cycles

2. … are independent of the outcomes of irrelevant events

3. … don’t depend on the current state of the world

4. … don’t change direction when all options get uniformly better
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5. Savage’s representation theorem

5. … are not totally indifferent between all outcomes

6. … let us accept any tiny amount of risk

… then we are acting as if we’re maximizing expected utility according to an 
uncertainty distribution obeying the laws of probability.
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6. Complete class theorems

A decision rule δ1 is dominated by rule δ2 if δ2 is guaranteed to give a better 
outcome than δ1 whatever happens. For example:

If bringing a laptop is useful whether there is Wi-Fi or not, then “bring a 
laptop” dominates “don’t bring a laptop”.

A complete class is a set of rules that, between them, dominate any rule outside 
the set.

Wald (1947): the class of rules that obey the laws of probability is complete.
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The Problem of the Priors

There are technical philosophical discussions about each of these arguments.

In my view, the big issue is how to use Bayesian inference in a principled way.

Specifically: how should we assign priors?
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Indifference and entropy

Two intuitive answers:

1. the principle of indifference
e.g. “assign p = ½ to each side of a coin”

“assign p = ⅙ to each face of a die”

2. the principle of maximum entropy: maximize the “spread” of probability
e.g. the normal distribution is the maximum-entropy distribution with 
mean μ and variance σ2
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Norton’s no-go theorem

Norton (2019): a system of inductive inference over a set of propositions can’t 
simultaneously:

1. … depend only on the deductive structure of the set
2. … be stable under finer grainings of propositions of the set
3. … assign more similar propositions closer levels of support
4. … distinguish between different propositions!

Norton calls this “the incompleteness of calculi of inductive inference”.

Bayesianism lacks a way of assigning priors that doesn’t violate condition 2.
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Alternative formal systems

Standard probability theory is the orthodoxy in epistemology, but variations 
include:

● imprecise probabilities, e.g. letting P(A) be an interval (p1, p2)
● ordinal probabilities, where P(A) and P(B) are placed on a ranking but don’t 

have numerical values
● Dempster-Shafer theory, relaxing the rule P(A or B) = P(A) + P(B) for 

disjoint A and B
● infinitesimal probabilities, where P(A) can be smaller than any real number 

but bigger than zero.
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Tomorrow and Friday

Days 4+5:

applications to phonology:

● explanation and explanatory power
● the role of phonetics in phonological theorizing
● scientific realism
● picking between analyses
● science as a social enterprise
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Days 4+5
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So what?
Some issues that Bayesianism can contribute to:

● explanation and explanatory power
● the role of phonetics in phonological theorizing
● scientific realism
● picking between analyses
● science as a social enterprise
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The likelihood principle again
The likelihood principle tells us:

● The only thing that matters in empirically evaluating a theory is
how likely it expected the data to be.

This is a demanding criterion: nothing else is evidentially relevant.

(e.g. how beautiful an analysis is, how neatly or satisfyingly it captures the data, 
how many generalizations it makes)
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Forwards and backwards again
Bayesian inference converts forward probabilities P(D|H) into backward 
probabilities P(H|D).

In phonology, the process generating the data is the centuries-long cycle of 
language acquisition and change. Put another way:

Historical phonology and phonological acquisition are the study of the 
forward problem.

Theoretical phonology is the study of the backward problem.
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Explanatory power and the role of phonetics
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Platonic vs embedded explanations

Platonic:

e.g. abstract constraints that express 
a language’s preference to have a 
symmetrical, dispersed vowel 
system (Flemming 2004)

Language as an abstract object

Embedded:

e.g. a model of the learner that predicts 
asymmetrical, undispersed systems to 
be less easily learnable (Vaux and 
Samuels 2015, Roberts and Clark 2020)

Language as a phenomenon in the 
physical universe
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Related ideas
Platonic explanation ≈ Gorrie’s (2015) ideal-typology, a paradigm that says 
linguistic theories refer to ‘ideal-types’ that need not exist in the real world.

Graf (2019) distinguishes two kinds of theoretical linguist:

● formalists believe the formalism is literally real (≈ embedded explanation);
● analysts believe the formalism is just a notation for an abstract “analysis” (≈ 

Platonic explanation).
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Against Platonic explanations
My view is that Bayesianism requires embedded explanations.

● We need a causal story that explains why the data are evidentially relevant 
to the theory we’re evaluating.

● Platonic explanations don’t have this property, until we cash them out in 
terms of claims about the real world.

We could annotate a Platonic explanation with likelihoods, but they wouldn’t be 
likelihoods of anything.
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The Gulf again
Learners only have indirect access to the adult grammar.

UR   →   SR    ⇢ ⇢ ⇢ ⇢ ⇢ UR
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The Gulf
This rules out explanations that refer to structure the child can’t see.

e.g. the moraic analysis of compensatory lengthening (Hayes 1989):

A child who fails to hear 
the first s doesn’t know 
there’s a mora that needs 
to be reattached.
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Phonetics vs phonology
In general, representational naturalness is not causally relevant when it conflicts 
with phonetics:

● Lip rounding in American English ɹ
○ rhoticity and roundedness share low F3, despite the lack of [+labial] (Mielke et al. 2016);

● Rhinoglottophilia, e.g. h > ŋ in Avestan
○ has both articulatory and acoustic reasons, despite the lack of [+nasal] (Matisoff 1975);

● Epenthesis in lateral-fricative clusters, e.g. ls > lts,
○ has a gestural timing explanation, despite the lack of [–cont] (Ohala 1997).

Moral: representational theories don’t make predictions on their own. We need 
to consider the Gulf.
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What makes an explanation?

What are we looking for in an explanation anyway? Some popular candidates:

● The deductive-nomological model (Hempel 1965): the theory explains the 
data as the (ideally deductive) consequence of a law.

e.g. “apples fall to the ground because of the law of gravity”

● Statistical relevance (Peirce 1931): the theory makes the data more likely 
to be true than if the theory was false.

e.g. “adaptive complexity would be unlikely by chance, but very likely 
given a creator”

D-N is a special case of SR.



What makes an explanation?

● The causal-mechanical model (Halpern and Pearl 2005): the theory gives a 
causal mechanism that produces the data.

e.g. “finch beaks are produced by the process of natural selection”

● Unification (Kitcher 1981): the theory unifies multiple kinds of data into 
consequences of one phenomenon.

e.g. “electricity and magnetism are consequences of the same field”

Or we could be pluralist: let “explanation” refer to any of the above depending 
on context.



A Bayesian perspective

My view:

● We should want true theories.
● Considerations of explanatory power are only relevant if there’s a Bayesian 

reason that “explanatory” theories have higher posterior probability.

The D-N, statistical relevance, causal-mechanical, and unification models are 
arguably special cases of Bayes.



A Gricean account of explanation

But not all true statements make good explanations.

Explanations should also obey Gricean principles (Hao 2022):

● contain the right amount of information (Quantity)
● avoid irrelevant details (Relation)
● be easy to understand (Manner)

A list of the positions and momenta of 1050 atoms might technically be an 
accurate account of the result of the last UK general election, but it’s un-Gricean.



Predictiveness

For a Bayesian, a theory’s predictions are a finite resource.

86

You can spread your 
expectations equally over all 
data sets…

…or put all your eggs in one 
basket with one strong 
prediction.



Predictiveness

Predictiveness/falsifiability ~ “scientific risk-taking”:

A more predictive theory has more to gain from a correct prediction and 
more to lose from an incorrect one.

A less predictive theory will not shift much from its prior probability, 
whatever the data are.

(But a less predictive theory could still be true!)



Predictiveness in phonology

In the phonology context, people often call theories like SFP “unrestrictive” ( = 
“unpredictive”). But:

1. Predictive and unpredictive theories have the same likelihood given the 
data in expectation. Unpredictive theories are not a priori less likely.

2. SFP makes clearer predictions about probable languages in tandem with a 
theory of diachrony, like EP.



Falsifiability

The textbook scientific method is focused on falsifying hypotheses by 
experiment. In the Bayesian worldview:

● Rather than picking one hypothesis and trying to falsify it, in general we are 
trying to distinguish between sets of hypotheses.

● Disconfirmation is gradient, not discrete. A theory that continues to make 
false predictions get less and less likely given the data.

● New experimental data are not the only relevant evidence. Theories are also 
judged based on how well they accommodate existing data.
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Ockham’s razor

The standard Bayesian approach to simplicity/“Ockham’s razor” is to assign 
simpler theories higher priors.

But why? A couple of responses:

1. Priors are arbitrary, so we’re free to build in Ockham’s razor if we like.

2. If simplicity is cashed out as “minimum description length” in a formal 
language, it’s impossible not to assign simpler theories higher priors beyond 
some cut-off (Carlsmith 2021).



Linguists vs learners

Distinguish between the mind of the linguist and the mind of the learner.

● If you accept the Bayesian arguments from days 2 and 3, linguists should be 
Bayesians.

● Child learners are probably not Bayesians.

When we write down an analysis, we are studying the child’s reasoning: the task 
is to reason about a non-Bayesian reasoner in a Bayesian way.



Scientific realism
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Scientific realism
Scientific theories often refer to new entities that help explain the data.

e.g. germs, atoms, electromagnetic fields, phonemes, syntactic structures…

Are these entities real?
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“Circularity”
Sometimes theories of invisible entities are accused of being “circular”.

“We propose floating features because of surface palatalization, but then 
say palatalization happens because of floating features.”

This is underlyingly a confusion between forward and backward probabilities:

● “palatalization ⇒ floating features” is a statement of evidential support
● “floating features ⇒ palatalization” is a statement of causation
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Kinds of realism
We can distinguish three kinds of realism in science (Horwich 1982):

1. Metaphysical realism: there is a real world out there
2. Semantic realism: we should take scientific claims “at face value” as 

descriptions of the real world
3. Epistemological realism: our current best theories are correct descriptions 

of the real world

Under Bayesianism, 3 comes in degrees: we can have more or less confidence 
about our current best theories.
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The no miracles argument
The classic argument for scientific realism: the “no miracles” argument.

Putnam (1975): realism “is the only philosophy that doesn’t make the 
success of science a miracle”.

e.g. if quantum electrodynamics were false, it would be very unlikely for the 
magnetic moment of the electron to match the theory to ten significant figures

This is a straightforward Bayesian argument:

“P(D|H) is very high and P(D|¬H) is very low, so D is strong evidence for H”
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A pessimistic response
The classic anti-realist response: even if P(D|H) is high, P(H) is very low because 
most scientific theories have historically been false:

● phlogiston
● luminiferous aether
● spontaneous generation
● miasma
● …

This is sometimes called the pessimistic meta-induction (Laudan 1981).
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A response to the response
One realist response to pessimistic meta-induction is to argue that superseded 
theories are not false: they’re special cases of new theories under particular 
conditions.

● Newtonian mechanics = special relativity at low speeds
● classical mechanics = quantum mechanics at large scales

Phonological examples?

● Neogrammarian change = lexical diffusion after completion
● deterministic OT = stochastic OT with no noise
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Verisimilitude
A different realist response: past theories are indeed false, but we’re steadily 
getting closer to the truth.

Compare: “all models are false, but some models are useful”

This relies on an idea of verisimilitude, or closeness-to-truth.

Now it’s not only probability that is gradient; (closeness-to-)truth itself is 
gradient.
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Verisimilitude
A couple of ideas:

1. If we have a metric over the space of possible worlds, we can treat 
verisimilitude as “closeness to the actual world” under that metric.

(Compare Lewis and Stalnaker’s “closeness” among possible worlds.)

2. We could model truth directly with a fuzzy logic, like the infinite-valued 
Łukasiewicz logic Łא, making the truth of a statement a real number 
between 0 and 1.

If scientific theories are false but becoming less false, the pessimistic 
meta-induction is less concerning.
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Picking between analyses
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Analysis under a theory
Theoretical linguists are often doing a mixture of two things at once:

1. picking between theories based on the data

2. picking between analyses of the data under a given background theory

We should be careful not to confuse these two goals.
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Linguists vs learners again
When we pick between analyses of a data set, we are modelling the reasoning of 
the child who constructed that analysis given their input.

Principles like Ockham’s razor or the laws of Bayesianism are only applicable to 
linguistic analysis if we have reason to think the child follows them.

In particular: children’s minds could be such that they come up with analyses that 
look silly to us as analysts.
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Taking the language faculty seriously
The language faculty did not evolve to:

● be easily analysable by linguists

● produce grammars that look satisfyingly neat to linguists

● produce grammars that are uniquely identifiable to a linguist who doesn’t 
know the space of possible grammars

If a theory or an analysis falls foul of these conditions – that’s unlucky for us, but 
doesn’t make it less likely to be true.

104



Example: “mirror-image” rules
In Lithuanian, both /ʃ+s/ and /s+ʃ/ surface as [ʃ] (Kenstowicz and Kisseberth 1979):

/neʃ-si/ → [neʃi] “you will carry”

/saus-ʃala/ → [sauʃala]  “bitter cold”

How should we analyse this?
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Example: “mirror-image” rules
Analysis 1: separate rules

s → ∅ / _ ʃ
s → ∅ / ʃ _

Analysis 2: allow disjunction of environments

s → ∅ / {_ ʃ, ʃ _}

Analysis 3: modify the syntax of phonological rules with an “adjacency” symbol |

s → ∅ | ʃ “delete s adjacent to ʃ”
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Example: “mirror-image” rules
Which of analyses 1, 2 and 3 is more satisfying to us as linguists is irrelevant to 
the question of which analysis the child picks.

If the phonological component doesn’t contain a | symbol, the child can’t pick 
option 3.

If the phonological component doesn’t contain disjunction over 
environments, the child can’t pick option 2.

Before considering which analysis the child will pick, we need to consider which 
analyses are available to the child for picking.
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Neat analyses vs possible analyses
Two separate claims:

1. “learners pick the neatest/simplest analysis possible given the options 
available”

2. “the space of possible analyses must be such that the neatest/simplest 
analysis that linguists can think of is available to the learner”

1 is plausibly true, but 2 is almost certainly false. The language faculty doesn’t 
care about us!
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Science as a social enterprise
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Science as a social enterprise
So far, we’ve been thinking of “all scientists” as a single agent – as if we all make 
up one giant brain.

But science in the real world takes place in a community of scientists.

Social epistemology is the field that studies reasoning by communities of 
reasoners.

110



Bayes vs Kuhn
Thomas Kuhn (1962) argued for a distinction between:

● “normal science”, where researchers within a community forbid 
questioning the assumptions of that community

● “paradigm shifts”, where a community suddenly shifts to a new set of 
assumptions

Bayesianism is permanently “open-minded”, with no distinction between normal 
science and paradigm shifts: everything is permanently up for re-evaluating.

Theoretical linguistics in the 21st century feels more Kuhnian to me.
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“Bubbliness” in science
Zollmann (2022): under some conditions, a network of individually Bayesian 
scientists will reject “unlucky” hypotheses too quickly (the Zollman effect).

But if we restrict information flow between scientists, unlucky hypotheses can 
survive long enough to become locally popular.

An argument for separate “bubbles” of scientists, semi-insulated from criticism 
by other bubbles?
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Social Bayesianism
There are interpretations of Bayesianism as a description of multiple agents.

Critch and Russell (2017): a single Bayesian agent is isomorphic to a sort of 
gambling-based democracy:

● hypotheses ~ voters
● likelihoods ~ voters’ predictive abilities (success at gambling)
● an agent’s decision ~ results of an election

(The formal analogy is fun, but I do not endorse replacing either science or 
democracy with a money-weighted election.)
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An example of embedded explanation
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Embedded explanation: markedness
If phonology is substance-free, what explains the “markedness” trends identified 
by Jakobson?

A formal model of sound change shows how EP can take some of the 
explanatory load off SFP and predict Jakobson’s correlations even if SFP is true 
(Sayeed and Ceolin 2019).
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Modelling sound change
In a simple model of sound change, there are two possible events: splits and 
mergers.

● A split takes an existing category and cuts it in two; some of its tokens are 
assigned to a different (possibly new) category.

● A merger takes two existing categories and merges them; all their tokens 
now belong to one category.

We can think of an unconditioned shift X > Y as equivalent to a ‘merger’ with a 
new category.
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Dynamics

Start with a vector of segment frequencies pi at time t. At each time step t+1, 
apply a split or merger at random:

Split Merger
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Splitwise and mergerwise bias

Each segment has a probability of being created or destroyed by sound change, 
which we encode as its splitwise and mergerwise bias respectively:

● Each bias is defined as a probability distribution over the segments in the 
language.

● When the algorithm calls for a random segment to be created in a split 
(destroyed in a merger), weight the choice of segment by its splitwise 
(mergerwise) bias.
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Results

Within-language frequencies of +biased a and –biased b over 10,000 runs 
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Embedded explanation: markedness
A model of languages undergoing random sound change derives Jakobson’s 
correlation between across-language frequency and within-language frequency.

If “acoustic/articulatory difficulty” drives sound change, age of acquisition, and 
impairment in aphasia, we have a potential causal diagram:
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Phonetic difficulty

Splitwise bias Mergerwise bias

Across-language frequencyWithin-language frequency

Age of acquisition Aphasic impairment



Miscellanea
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Theories as notational variants

Maybe different phonological theories are expressing the same claims about 
language in a different notation?

Responses:

● This is false for e.g. SFP and classic OT, which allow different sets of 
possible languages.

● Even for theories that allow the same set of possible languages, we might 
be atomists in Graf’s sense: realists about the individual atoms of our 
description.
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Theories as notational variants

● If it were true that linguistic theories don’t make different predictions, there 
would be no point in doing linguistics! The data would give us precisely zero 
information about each theory.

But to the extent that two superficially different theories really are describing 
the same possible world, it would be a mistake to think of them as competitors.
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Theories and truth

Are theories even the kind of thing that can be true or false?

For Graf’s analysts, theories can’t be “true” or “false” any more than Hausa or 
Tamil could be “true” or “false”. An analyst’s theory is just a formal language for 
describing analyses.

But what are the truth conditions of an analysis? If it’s a claim about mental 
representations, we can ask what makes a possible representation – and we’re 
back at formalism.

124



Generalizations of Bayes’ rule

Bayesian inference in practice assumes we learn D with certainty. What if our 
certainty in D is only 0.7, and we’re uncertain about the data? Two responses:

1. If we know something for certain, count that as “the data”.

2. Shrink the probability of D by a factor of 0.7, leaving all other probabilities 
unchanged. (Bayes’ rule is the special case where D has probability 1.)

2 is itself a special case of minimizing the relative entropy between the 
posterior and prior subject to the constraint that D has posterior probability 0.7 
(Diaconis and Zabell 1982).
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Probability vs explanatory power

David Deutsch (2014) gives three arguments against Bayesianism:

1. Say an explanatory theory (e.g. “the sun is powered by fusion”) has 
“explanatoriness” q. Its negation (“the sun is not powered by fusion”) has 
explanatoriness 0, not 1 – q. So q can’t be a probability.

2. We have inconsistent explanatory theories (e.g. general relativity and 
quantum field theory) whose joint probability is zero, but they are still 
explanatory.

3. Pessimistic meta-induction: all of our current theories are false, but they are 
still explanatory, and their true negations are not explanatory.
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Probability vs explanatory power

We’ve talked about responses to the pessimistic meta-induction and how false 
theories might differ in their gradient closeness-to-truth.

On the first point, it would be a mistake to equate probability with explanatory 
power. “2 + 2 = 4” is not maximally explanatory!

Sprenger and Hartmann (2019) list a few proposed Bayesian metrics of 
explanatory power.

Example: the Good-McGrew measure log(P(D|H)/P(D)), which says H’s
explanatory power is the log of the fraction by which it increases the 
probability of the data D.
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The problem of old evidence

Intuitively, if we discover that a theory H accounts for existing data D, this 
should be Bayesian evidence for H.

Example: Einstein’s general relativity explained an already known shift in 
the orbit of Mercury.

But if P(D) = 1, then P(D|H) = P(D|¬H), so D is apparently not evidence for H!

This is the problem of old evidence. Is it really true that theories get no points 
for explaining known facts?
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The problem of old evidence

It’s been suggested this is a problem with the assumption of logical 
omniscience (e.g. Garber 1983).

A logically omniscient Bayesian already knows that H entails D – call this “X”. 

A non-logically omniscient Einstein learned X when he worked out the 
implications of relativity, and P(H|X,D) > P(H|¬X,D). So it’s really X that is 
evidence for H, not D.
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Logical omniscience

We often express uncertainty about logical facts:

● “I’m not sure whether 4836 × 505 is divisible by 12”
● “The Riemann hypothesis is probably true”
● “All even numbers up to 4 × 1018 have been found to obey Goldbach’s 

conjecture, so the conjecture keeps looking more likely”

Is it irrational to think things like this?
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Logical omniscience

Pettigrew (2021): Bayesianism can dispense with the assumption of logical 
omniscience, given computational or memory constraints.

Good’s theorem says “information is valuable”: you should expect yourself to 
make better decisions on Wednesday if you learn new information on Tuesday.

So it’s instrumentally irrational not to know logical truths if you are logically 
omniscient – information is “free” to you, so you’re wasting potential value.

But if you aren’t logically omniscient, it can be rational to be ignorant about 
logical truths.
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