Abdellah Chekayri, Tobias Scheer
Al Akhawayn University, Ifrane
Université de Nice, CNRS 6039

THE APPEARANCE OF GLIDES IN CLASSICAL ARABIC DEFECTIVE VERBS

1. INTRODUCTION

In Classical Arabic, so-called weak verbs subdivide into two categories: deaf verbs with identical C₂ and C₃ (e.g. madad “to extend”) and those showing a glide in either C₁, C₂ or C₃. It has been shown in Chekayri & Scheer (1996) that the distribution of [y] and [w] is predictable in the latter class. That is, the glide appearing in some forms of a given verb is the output of a derivation originating in a vowel, that is V₂ for defective (glide in C₂) and hollow (glide in C₃), V₁ for assimilated (glide in C₁) verbs. The nature of this derivation is apophonic in the sense of Guerrell & Lowenstamm (1996). According to this view, weak verbs are underlying biliterals that resort to apophonic glide-creation if a situation arises where a consonant is needed in order to fill in a vacant position of the template.

Chekayri & Scheer (1996) predict which glide will appear in which verb. In the present paper, we investigate the circumstances under which this glide surfaces throughout conjugation. Its presence vs. absence is considered to be unpredictable in traditional work

1 We would like to express our gratitude to Georges Bohas, Philippe Ségalès and an anonymous reviewer for making us aware of certain impairments in earlier versions of this text.

2 We use the term “defective verb” in the sense of “verb with a glide in C₂”, not, as sometimes practiced, referring to “verbs with a glide in either C₁, C₂ or C₃”. Verbs with two glides, i.e. so-called /lalah/mufrada (glide in C₁ and C₂) and /la/la/mufrad (glide in C₂ and C₃) are not addressed in this article. These as well as hollow verbs (glide in C₃) are discussed in forthcoming work (Chekayri&Scheer forthcoming).
such as, among others, Siibawayhi (1988) and Fleisch (1979). In these sources, the reader is simply given an amorphous list of glide-triggering and glide-preventing contexts that are not claimed to share any property. We intend to show that 1) the appearance of the glide throughout conjugation of defective verbs is predictable, 2) its prediction can only be achieved when assuming Chekayri & Scheer (1996) and 3) the same insertion-strategy Classical Arabic recurs to elsewhere in the grammar is at work here. That is, a glide is apophonically created if a phonologically “illegal” situation arises.

We start in section 2 by recalling the relevant parts of Chekayri & Scheer (1996). Sections 3 and 4 present the excessively complex system woven by the conjugation of defective verbs, stating relevant surface generalisations and putting forth an analysis thereof. Finally, it is shown in sections 5 and 6 that two misbehaving personal forms in fact reveal the more general opposition of derived vs. unnderived verbs.

2. APOPHONIC ORIGIN OF GLIDES

The distribution of glides in defective verbs is as follows:4

<table>
<thead>
<tr>
<th>(V_2)</th>
<th>number of verbs with</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>(y)</td>
<td>pf</td>
</tr>
<tr>
<td>A</td>
<td>230</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>—</td>
<td>132</td>
</tr>
<tr>
<td>U</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>total: 493</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since verbs with \(V_2 = [a] \) admit both \([y] \) and \([w] \) in numerically significant proportions, it does not seem possible to predict the glide from the second vowel of the stem. However, the situation becomes clearer when observing that the distribution of the glide for \(V_2 = [a] \) is exactly parallel to that of \(V_2 \) not in perfective, but in imperfective forms. Indeed, for verbs with pf \(V_2 = [a] \), all and only those that exhibit a \([y]\) show an \([i]\) in imperfective \(V_2 \), and all and only the verbs whose glide is \([w]\) present \([u]\) in imperfective \(V_2 \). Hence, the glide is predictable for all defective verbs on the basis of the imperfective value of \(V_2 \).

Distributionally, the glide thus obeys the same regularity as the derivation of the imperfective \(V_2 \) from its perfective input. If there is a way to understand the latter, the former falls out naturally. Guerssel & Lowenstamm (1996) argue that the apophonic system of Classical Arabic is driven by a very simple derivational mechanism which may be represented as under (2).

(2) Apophonics Path

\[\emptyset I A U U \]

In their view, imperfective \(V_2 \) is derived from the perfective base-form by moving one step on the Apophonics Path. Hence, for labisa, kataba, kabura, “to wear”, “to write”, “to become great”, the imperfective forms ya-labissa, ya-katabu and ya-kaburu are straightforward. For the Daraba “to beat” class, \(V_2 \) is assumed to be underlyingly zero, so that the apophonics derivation yields \([i]\), i.e. ya-Dariba.6

If \(\text{pf} V_2 \) is the result of an apophonics derivation on pf \(V_2 \), it follows that the glide in defective verbs has the same origin and is derived by the same apophonics means. One consequence of this insight is that weak verbs must be bilaterals: if the glide is created through apophonics in the course of a derivation, it must be absent from the lexicon. In this case, the question arises why glides are created. Chekayri & Scheer (1996) have examined assimilated glides (glide in \(C_1 \)) with respect to this issue (see also Chekayri 1999).

When deriving imperfective forms of this class of verbs, the glide, which appears in the perfective, is always absent.6 If, following Guerssel & Lowenstamm (forth), the existence of a derivational syllable is assumed, this fact is a natural consequence of the Template Satisfaction Principle (e.g. McCarthy 1979). The derivational syllable is underscored in the following figures. It may be accessed in derived forms if a derivation has produced segmental material that otherwise could not be accommodated. Consider first the derivation of a sound verb like kataba \(\rightarrow \) ya-katabu.

(3) pf. kataba “write”

\[C V C V C V C V C V C V \]

ipf. ya-katabu

\[k \ a \ t \ a \ b \ a \ y \ a k \ t \ u \]

apophony

In imperfective forms, the lexicon provides three consonants, which face three consonantal positions that are ready for identification. In imperfective forms on the other hand, four consonants seek association, that is three provided by the lexicon and the prefixal \([y]\). In this case, the derivational syllable is accessed in order to host all four consonants. Now consider the situation of assimilated verbs as under (4).

5 See Guerssel & Lowenstamm (1996) for more discussion, which we cannot reproduce here. For full argumentation regarding apophonics glide-creation, see Chekayri & Scheer (1996).

6 This holds true for verbs with \(V_2 = [a] \) only. More detailed data and discussion are provided in section 6.3.
It is consistent to assume that there is a reason why these sequences do not occur. Unfortunately, we are not aware of this reason. But in case such configurations are produced by morphology, it is natural to view processes that occur in precisely these environments as a way of amending unobserved patterns. We will show below that all processes observed in the conjugation of defective verbs fall under the scope of this mechanism.

However, let us be explicit on the status of (5). We are not saying that the observations given there are due to a constraint. Such a move would introduce an unfashionable explanatory ambition, falling prey to the confusion of observation and explanation. The explanation of the facts stated in (5) must be sought elsewhere in the grammar of Classical Arabic, they are everything but random. Labelling them “constraint” would be a way to assert that we know about the explanation we ignore: these sequences would be said not to exist because of the existence of the constraint. Their non-random nature would be missed: if they were the reverse, the constraint would simply state the opposite.8

In the next section, we introduce exhaustive data concerning the conjugation of defective verbs.

3. UNATTTESTED CLUSTERS

The case of assimilated verbs discussed above shows how a situation that phonotactics do not allow for is amended by apophonic glide-creation. The basic claim of this paper states that the presence of glides in defective verbs depends on the segmental sequences that are produced by morphology: if clusters arise that are unattested in the language, a phonological process is triggered. Namely, the following sequences do not occur: (5a–d) are not found in Classical Arabic at all, (5e, f) do not exist in its verbal system.7

<table>
<thead>
<tr>
<th>(5)</th>
<th>a. any hiatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. super long vowels *ii, *uu, *naa</td>
<td></td>
</tr>
<tr>
<td>c. *uwC, *iyC</td>
<td></td>
</tr>
<tr>
<td>d. *uy, *iw</td>
<td></td>
</tr>
<tr>
<td>e. *Vuu, *Vyi, *Vuu, *Vyi</td>
<td></td>
</tr>
</tbody>
</table>

7 Some nominal forms instantiate a subset of the patterns in (5e, f). Namely, [awii] is found for example in rawisya. However, as will be evident from table, morphology does not produce /...aw.../ sequences, and their behaviour thus cannot be tested. In any event, the existence of the particular sequence [awii] does not harm any generalisation that is involved in the argumentation developed. The same holds true for [ayii], which is instantiated by hollow verbs of the 7th class such as sayyaf. The sequence (awii) is found in hollow adjectives such as “TAWILL “tall”. Morphology produces /...a-ii.../ at the intersection of defective verbs and their personal endings, but only in cases where the result betrays predictions anyway, cf. the second but last line of table. The sequence [ayuu] exists in plural forms of hollow nouns such as sg sayf, pl saywaf. This, however, does not harm the generalisations at hand because apophonic glide-creation yields *[awuu] in case the morphological output is /...aww.../. Finally, the hapax Tawai “be tall” instantiating [awii] is to be mentioned.

8 See Scheer (1999a, b), Carvalho (1998) for more discussion of the inherent circularity of constraints.

For each apophonic class, a defective representative has been chosen. The personal endings are subject to various processes when added to defective verbs. Their real identity is shown by a sound verb, _labisa_ "clothe", whose conjugated forms appear in the third column. Every verb is identified by its pf-ipf alternations according to Guerells & Lowenstamm’s (1996) apohonic theory introduced above, thus "dana = a-u", "rama = a-i" etc. In addition, the status of V₁ is given for each combination of voice and aspect. Guerells & Lowenstamm (1996) argue that all four configurations are connected by apohonic derivations of the following kind:

(6) active pf \[C_1 \, A \, C_2 \, V_1 \, C_3 \]
passive pf \[C_1 \, U \, C_2 \, I \, C_1 \]

Table (7) below embodies all the information mentioned.

(7)

Perfective Active \[\text{V₁ = A, V₂ = lexical} \]

<table>
<thead>
<tr>
<th>pers. suffix</th>
<th>dana=a-u</th>
<th>rama=a-i</th>
<th>saaru=a-u</th>
<th>naba=a-a</th>
<th>rdDi=a-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg 1 labis-tu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 m -a</td>
<td>danaa</td>
<td>ramaya</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>2 f -i</td>
<td>danaa</td>
<td>ramaya</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 m -a</td>
<td>danaa</td>
<td>ramaa</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 f -a</td>
<td>danaa</td>
<td>ramat</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>du 2 -tumaa</td>
<td>danaa</td>
<td>ramaya</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 m -a</td>
<td>danaa</td>
<td>ramaa</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 f -a</td>
<td>danaa</td>
<td>ramat</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>pl 1 -aa</td>
<td>danaa</td>
<td>ramaya</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>2 m -a</td>
<td>danaa</td>
<td>ramaa</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>2 f -i</td>
<td>danaa</td>
<td>ramat</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 m -a</td>
<td>danaa</td>
<td>ramaa</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
<tr>
<td>3 f -a</td>
<td>danaa</td>
<td>ramat</td>
<td>saaru</td>
<td>naba</td>
<td>rdDi</td>
</tr>
</tbody>
</table>

Imperfective Passive \[\text{V₁ = B, V₂ = A (apophonic on V₂ pf, active)} \]

<table>
<thead>
<tr>
<th>pers. suffix</th>
<th>dana=a-u</th>
<th>rama=Ø-i</th>
<th>saaru=Ø-i</th>
<th>naba=Ø-a</th>
<th>rdDi=Ø-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg 1 ?a-lbas-Ø-</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>2 m -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>2 f -i</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 m -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 f -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>du 2 -tumaa</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 m -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 f -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>pl 1 -aa</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>2 m -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>2 f -i</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 m -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
<tr>
<td>3 f -a</td>
<td>?a-dnaa</td>
<td>?a-ma</td>
<td>?a-ma</td>
<td>?a-nhaa</td>
<td>?a-Daa</td>
</tr>
</tbody>
</table>

THE APPEARANCE OF GLIDES IN CLASSICAL ARABIC DEFECTIVE VERBS

In case of consonant-initial suffixes that are provided with their own syllabic structure (cf. sound verbs) as under (8b,d), the natural way to fill in C3 is through apophonic glide-creation as under (8b). An example thereof is pf act. sg 1 /rama-tel → /ramaytu/. However, depending on the quality of V2, glide-creation may produce unobserved sequences such as *[ya]C, cf. pf act.sg 1 /raDi-tel → *[raDiytu/. In this case, V2 spreads onto the final Nucleus of the binyan as under (8d), yielding a long vowel [raDii].

If the suffix is vowel-initial, the suffixal vowel may or may not be identical with V2. In the former case, both are simply concatenated, instantiating (8c). The result is a long vowel as for example in pf act. sg 3m /dana- → /dana/. If on the other hand V2 is different from the suffixal vowel, concatenation may not take place since hiatuses do not occur in Classical Arabic. Hence, apophonic glide-creation may rescue the structure in the sense of (8a). This indeed occurs in pf act. sg 3m /sar-u- → /saruwa/. However, here again, glide-creation may also produce non-occurrent sequences such as *[yu], cf. ipf act. sg 1 /a-ri-mu-l → *[a-ri-miu]. In this case, the only way to meet the Template Satisfaction Principle is to abandon a vowel in order for the other to be able to spread. This is indeed what happens: V2 spreads onto the position that is normally occupied by the suffixal vowel, which is lost. The result appears as *[a-ri-miu], which is an instantiation of (8c).

The situation is much the same when suffixes begin with a long vowel. In case V2 and the suffix-initial long vowel are different, apophonic glide-creation may successfully break up the hiatus as for pf act. du 3m /sar-aw-, which comes out as /sarawwa/, following (8a). As before, glide-creation may also yield unobserved structures such as *[yi]C in ipf act. sg 2f /la-dnu-i → *[la-dnuwi],. In these configurations, the long vowel takes on the short V2, which is lost. The result is [a-dniia], illustrating (8c). If V2 and the suffix-initial long vowel are identical, concatenation would produce a super long vowel. Of course, objects of this kind do not exist. The result is a "simple" long vowel following the configuration under (8c). An example thereof is ipf act. sg 2f /la-ri-mi → /[a-ri-miu],.

Finally, a special behaviour is encountered for sequences of V2-[a] followed by suffixal long [i,uu]. As before, the loss of V2 could be expected, yielding an output [C2]i/ [C2]u. However, the obtaining results are [C2]y/ [C2]w, as in ipf act. sg 2f /la-nha-i → /[la-nahya], pf act. pl 3m /dana-sul → /danaw/. We do not know why these configurations do not follow the general pattern.

Table (9) sums up this discussion. It lists all logically possible combinations of V2 and personal endings. The reader may verify under (7) that all existing configurations are an instantiation of (8), and that all identical sequences of V2+suffx behave alike ("unatt. sequ. = unattested sequence").

a. C3 is identified: -V suffix
C1 V C V C1 V C1 V y w
b. C3 is identified: -C suffix
C1 V C V C1 V C1 V y
C C

c. C3 is circumscripted: -V suffix
C1 V C V C1 V C1 V y w
d. C3 is circumscripted: -C suffix
C1 V C V C1 V C1 V y
C C
THE APPEARANCE OF GLIDES IN CLASSICAL ARABIC DEFECTIVE VERBS

All sequences produced by the morphology are treated along the same hierarchised pathway: 1) concatenation. If the result produces an unattested sequence, 2) apophonic glide-creation is sought. In case the ensuing cluster is still absent from Classical Arabic, 3) (8c) is arrived at by spreading. In this case, lexically present material is lost: either V₂ or the suffixal vowel is truncated. The former takes place when the suffixal vowel is long, the latter in case it is short.

Note that a given structure may fail to be tolerated for different reasons: 1) if C₁ is neither identified nor circumscripted (concatenation of V₁ and consonant-initial suffixes), 2) if a non-occurrence sequence obtains. These are listed under (5).

4.2. Order of strategies

We have seen that the impressively complex conjugation of defective verbs may be accounted for by assuming three different strategies to be performed on morphological output: 1) simple concatenation, 2) apophonic glide-creation, 3) spreading. These three devices crucially apply one after the other much in the way that is familiar from ordered rules or constraints. That is, glides are created only if concatenation has proved unsuccessful, and spreading takes place only if both concatenation and glide-creation produce unattested sequences. Why is this order as it is, rather than the reverse? Unlike rule- and constraint-based approaches that never appeal to independent ("intrinsic") evidence in order to motivate the ranking of their devices, we should like to suggest a reason for the ordering observed. When looking at the consequences of each strategy, the ranking may be better understood. Indeed, concatenation is segmentally neutral: no material is added, nor is there any lexically present segment lost. Apophonic glide-creation adjoins segmental material to the string that was lexically absent, and spreading finally entails the loss of lexically present segments.

4.3. Glides have two different origins

When going through table (7), most of the glides observed indeed do depend on V₃, as is predicted by Chekayri & Scheer (1996). Consider the example of pf act. sg I given below.

(10)

<table>
<thead>
<tr>
<th>pers. suffix</th>
<th>dana = a= u</th>
<th>rama = O-i</th>
<th>saru = u-u</th>
<th>naha = a-s</th>
<th>raDi = i-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg 1</td>
<td>labis-tu</td>
<td>danaatu</td>
<td>sarutu</td>
<td>nahaatu</td>
<td>raDitu</td>
</tr>
</tbody>
</table>

In verbs with ipf V₃=[u] (da= a-u), [w] appears, while verbs showing [i] in V₂ in active imperfective forms (rm= a-u) have [y].

The attentive reader will have noticed, however, the presence of a number of glides whose distribution is in no way connected to V₂. All cases thereof are given under (11).
4.4. Apophonic glide-creation viewed from inside conjugation

Chekayri & Scheer (1996) have established that the distribution of [w] and [y] among weak verbs is a function of V₂. This result may be controlled when comparing the different verbal forms from inside of the conjugation. Table (12) shows underlying and surface forms of V₂ for every verbal class, as well as the glide that is observed on its right-hand side.¹⁵

<table>
<thead>
<tr>
<th>verb</th>
<th>underlying V₂</th>
<th>surface V₂</th>
<th>Glide</th>
<th>glide derived from</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn</td>
<td>A</td>
<td>a</td>
<td>w</td>
<td>pf act. /N'y/</td>
</tr>
<tr>
<td>rm</td>
<td>Ø</td>
<td>a</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td>?</td>
<td>u</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>nh</td>
<td>E</td>
<td>a</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>rD</td>
<td>i</td>
<td>i</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn</td>
</tr>
<tr>
<td>rm</td>
</tr>
<tr>
<td>sr</td>
</tr>
<tr>
<td>nh</td>
</tr>
<tr>
<td>rD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ipf acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn</td>
</tr>
<tr>
<td>rm</td>
</tr>
<tr>
<td>sr</td>
</tr>
<tr>
<td>nh</td>
</tr>
<tr>
<td>rD</td>
</tr>
</tbody>
</table>

Clearly, the distribution of [w] and [y] is a function of V₂: if the latter is subject to variation as in active forms, the glide also alternates. If on the other hand V₂ hosts the invariable passive marker [i] (perfective) or [a] (imperfective, i.e. the result of an apophonic derivation on pf [i], cf. (6)) which is common for all verbs, only [y] appears.

It could be argued that the invariable [y] in passive forms is simply a copy of the passive [i]. However, coming across the same invariable [y] in imperfective passive forms where V₂ is [a] would remain mysterious. If on the other hand it is assumed that in both cases, the passive [i] is the derivational basis for apophonic glide-creation (and for the

¹⁵ But pf pass. pl 3m [-uu]. Simple concatenation in this case produces *[C_u:C_i]-uu*. Apophonic glide-creation would have to ensue because hiatuses are unstressed in Classical Arabic. However, the result *[C_u:C_j]-uu* still contains the non-occurrent cluster *[yuu]*, cf. (5e). In all other cases of that kind, the situation is resolved in a way that the long suffix [-uu] appears as a glide [-w], cf. (11). However in pf pass. pl 3m, this option is not available either because the ensuing sequence *[C_u:C_j]-w* contains *[iw]*, which does not exist in Classical Arabic, cf. (5d). The solution adopted by the language is to truncate the imperfective ㅐ/ [C_u:C_j]-uu/ → [C_u:C_m].

¹⁶ The underlying identity of V₂ for the nh=aa class may not be determined in the usual way because the guttural inhibits apophony to the effect that no alternation in imperfective forms occurs. The glide [y], however, points to a lexical V₂ = a for this verb, hence it would be of the Darraba class.
4.5. Two different glides in the same verb

Weak verbs are traditionally viewed as possessing a glide in their lexical representation, cf. for instance Silbawayhi (1988), ibn al-Haajib (1995), ibn Jinnii (1954), Fleisch (1979), Brame (1970). According to this option, glides are deleted when they do not appear on the surface. For obvious reasons, this approach is unable to distinguish between the two kinds of glides and their contrasting origin in the way that has been demonstrated in section 4.3. This distinction being crucial for the understanding of the semivocalic system of weak verbs, most relevant generalisations, among which those in (13), are missed. One consequence thereof is the amorphous lists of vocalic combinations that do or do not trigger the appearance of glides, which are found in most grammars. See also Angojard (1984), Bohas (1979, 1985) and Kouloughli (1979) on this issue.

More specifically, let us consider cases where two different glides appear in the conjugation of a single verb. Relevant forms of the verb *dun = a-u* appear under:

(14) a. pf act. sg. 1 danaw-tu
 b. pf act. du 3m danaw-a
 c. pf pass. sg. 3m dumiy-a
c. ipf pass. pl 3f yu-dnay-na
 d. ipf pass. sg/pl 2f tu-dnay-na

If glides are underlyingly present, the lexical representation of this verb is *dunw*. Then, the [y] in (14b,c) begs the question. In case the odd [y] is adjacent to an [I] as in (14b), assimilation-rules of the kind */w/ —> [y] [l —]* are commonly invoked, as by Baaran grammarians such as ibn ya'lil (1973), or Brame (1970). However, there is no way to account for the [y] in (14c) via assimilation because the vocalic environment is [a]. Arab Grammarians therefore resort to assimilation through the perfective passive *V₂ = [I]*, which they argue is underlying in imperfective passive forms. This move yields correct

17 The rule of assimilation shown is advocated by Arabic Grammarians even for verbs that show over [y] in all forms but those where the glide is a manifestation of the suffix. *rd-* is for instance viewed as *rdwa* because the root shows [w] in the nominal madīwar form *riDwaan*. See Bohas (1979) on this issue.

THE APPEARANCE OF GLIDES IN CLASSICAL ARABIC DEFECTIVE VERBS

surface forms. Our own approach also derives the glide observed in the imperfective passive from perfective passive forms, as shown in (12). Hence, both views enjoy the same empirical adequation with respect to this particular set of data. However, one difference remains: the derivation of ipf pass. *V₂ = [a]* from pf pass. *V₂ = [I]* is straightforward according to (6) since its character is apophonic. It remains stipulative under the deletion-approach.

5. DERIVED VS. UNDERIVED PERFECTIVES

5.1. Misbehaving forms

The attentive reader will have noticed that six verbal forms run foul of the general pattern that was exposed so far.

(15)

\[
\begin{array}{lcccccc}
\text{pf active} & \text{pers. suffix} & \text{dana=m-u} & \text{rama=a-ī} & \text{san}=\text{u-u} & \text{nah}=\text{a-a} & \text{raDī=ī-a} \\
\text{sg 3 f} & \text{-at} & \text{danat} & \text{ramat} & \text{nahat} \\
\text{du 3 f} & \text{-ataa} & \text{danaataa} & \text{ramataa} & \text{nahataa} \\
\end{array}
\]

Indeed, morphology produces sequences of two adjacent [a], e.g. pf act. 3f /dana-at/, that should merge into a long vowel according to (9). However, instead of the expected [danaat, ramaat, nahaat, danaataa, ramaataa, nahaataa], these verbal forms surface with short vowels. The special behaviour of these suffixes has been pointed out independently, see e.g. ibn al-anbaari, abuu bakr (1981).

Distributionally, the misbehaving forms are easily identifiable: short instead of expected long vowels represent all and only the occurrences of the underlying structure /...a + aC/. In any other case, i.e. when the suffixal [-a] is not followed by a consonant as in, say, pf act. sg 3m /dana + a/ —> [danaa], the result is regularly long.

Hence, two parameters yield exceptional forms: 1) the concatenation of two low vowels (concatenation of two [I]s or [u]s produces regular results) and 2) the presence of a consonant following the suffixal [-a] (simple [-a] shows regular behaviour).

In this section, we would like to investigate this issue. We aim at showing that this irregularity, which seems insignificant at first sight, in fact reveals an important property of Classical Arabic verbs.

5.2. Identity of perfective feminine suffixes

The suffixes [-at, -ataa] that have been singled out because of their abnormal behaviour are also special with respect to another property: they are the only Classical Arabic personal endings that begin with a short vowel followed by a consonant.
Consider the structure of perfective singular suffixes: [1-[tu], 2m-[ta], 2f-[ti], 3m-[a], 3f-[at]]. Obviously, these are combinations of the three vowels [i, u, u] and [i]. Any configuration [-V] is instantiated, and a vowel exists alone [-a]. The only missing combination in order to exhaust all logically possible patterns is [-i] in isolation without a vowel.

We shall take seriously this missing option hereafter and explore the possibility that [-at] has the underlying identity [-i]-t. Under this hypothesis, [-a-] is filled in by way of epenthesis in order to satisfy the Empty Category Principle (see next section). The case of pf act. du 3f-[at-ul] is exactly parallel because it may be deconstructed as [-at-aa], [-aa] being the dual marker common to all perfective dual forms.

If it can be shown that [-at] in fact is [-i]-t, three problems are overcome. On one hand, the generalisation “there is no personal ending beginning with a short vowel followed by a consonant” is exceptionless. On the other hand, perfective singular suffixes illustrate all and only the logically possible combinations of [i] and the three vowels of the language. Finally, our initial observation regarding an expected long vowel where short [a] surfaces is deprived of its substance. Indeed, if the [a] of [-at-aa] is the result of epenthesis, a long [aa] is no longer expected since the morphology does not produce /dana-at(aa)/, but /dana-t(aa)/.

5.3. Proper Government and empty Nuclei in sound and weak verbs

The figures used in this paper show a number of empty constituents, cf. for instance. The idea that Classical Arabic is a strict CV-language underlyingly is expressed in Guerass & Lowenstamm (forth). Recent work also evaluates the possibility of extending to other languages this syllabic analysis according to which there are no Codas nor branching constituents. In any event, viewing syllabic structure as a strict sequence of non-branching Onsets and non-branching Nuclei leads to the multiplication of empty constituents, chiefly of empty Nuclei. The phonological Empty Category Principle (Kaye et al. 1990:219), which is parallel to the one familiar from syntactic, defines the conditions under which an empty Nucleus may remain phonetically unexpressed. An adapted version thereof appears under (16).

(16) Empty Category Principle

An empty Nucleus may remain unexpressed if it is properly governed.

Proper Government (PG) is an asymmetric internuclear relation whereby Nuclei endowed with segmental content may govern adjacent empty Nuclei to their left. This internuclear dependency relation has proved successful in accounting for various vowel-zero alternations in genetically unrelated languages, among which are modern Arabic varieties. Consider the representation (8b), repeated here as (17a) for convenience, where explicit governing relations are added. In (17b), the same situation

involving a consonant-initial suffix is exemplified for a sound verb, perf act. sg1 [labis-tu].

(17)

a. C, is identified: C-initial suffix

\[C_1 \ V \ C \ V \ C_2 \ V_2 \ C_1 \ V_1 - C \ V \]

\[\quad \ y \ \sigma \ C \]

b. sound verb with C-initial suffix

\[C_1 \ V \ C \ V \ C_2 \ V_2 \ C_1 \ V_1 - C \ V \]

\[\quad \ l \ a \ \ b \ i \ s \ \sigma \ t \ u \ w \]

In both cases, the binyan-final V₃ is properly governed by the suffixal vowel, and may thus remain phonetically unexpressed. However, if the personal ending consists solely of a consonant as in the case of our hypothetical pf act. sg/dt 3f [-i]-t, no governor is available for V₃, which thus must receive phonetic identification. Recall that only contentful Nuclei may govern. Relevant representations of this appear under (18a) for sound, under (18b) for defective verbs.

(18)

a. sound verb: [labis-ti]

\[C_1 \ V \ C \ V \ C_2 \ V_2 \ C_1 \ V_1 - C \ V \]

\[\quad \ l \ a \ b \ i \ s \ a \ t \ \sigma \]

epenthesis

b. defective verb: [dana-ti]

\[C_1 \ V \ C \ V \ C_2 \ V_2 \ C_1 \ V_1 - C \ V \]

\[\quad \ d \ a \ n \ a \ \sigma \ t \ \sigma \]

Under (18a), epenthesis ensues in order to satisfy the ECP for V₃. In (18b), however, epenthesis cannot solve the problem since C₂ would remain an orphan, which would be at variance with the Template Satisfaction Principle. Apophonemic glide-creation would not help either because V₃ would still not be governed. In this case, the lexically unassociated suffixal [-i]-t identifies C₂, and the resulting form is thus [dana]. Both the ECP and the Template Satisfaction Principle are respected.

5.4. Licensing of long vowels

Classical Arabic could resort to yet another strategy in order to rescue the morphological output [dana-t(a)u] (18b). That is, V₂ could spread onto V₃ as in the pf act sg1 /saru-tu, raDi-tu/ –> [saru-ttu, raDitu] where apophonemic glide-creation is prohibited (*[uW-C, iY-C]), thereby circumscribing C₂ as shown in (8d). Consider this option for both cases mentioned under (19a), as opposed to [dana-ti] under (19b).

See Kaye (1990a) on the status of licensed final empty Nuclei, which may remain phonetically unexpressed even when escaping Proper Government.
The appearance of glides in Classical Arabic defective verbs

(19) a. spreading of V₂; /ṣaru-tu, raDi-tul PG
 C₁ V C₂ V₂ C₃ V₄ C₅ PG
 s a r u t u
 r a D i t u

 b. spreading of V₂; /dana-ti
 C₁ V C₂ V₂ C₃ V₄ C₅ PG
 d a n a ti θ

As before, V₂ escapes Proper Government in (19b), but not in (19a). We believe that this is the reason why V₂ may spread in the former, but not in the latter configuration. Classical Arabic indeed admits final long vowels (cf. note 20), but does not tolerate long vowels followed by two consonants in verbal forms: *VVCCV.¹¹

Hollow verbs illustrate this contextual restriction on the existence of long vowels. Long V₂ occurs when the personal suffix is vowel-initial, whereas short V₂ appears in case the ending is consonant-initial.²²

(20) qI=ma-u “say” sI=ma-u Tl=mu-u
 a. + V...
 ?a-quw-lu ta-quw-lina ta-quw-lani ta-quw-luna qa-quw-lu
 imp act. sg l imp act. sg 2f imp act. du2,3f imperative sg 2f
 b. + CV
 ta-quw-na ya-quw-na ta-Tul-na ya-Tul-na
 imp act. pl2f imp act. pl3f
 c. + qi
 qa-quw-lu
 imperative sg2m

Representations of the first of these appear under (21).

(21) a. spreading possible: V₂ governed
 C₁ V C₂ V₂ C₃ V₄ PG
 q u l u

 b. spreading impossible: V₂ ungoverned
 C₁ V C₂ V₂ C₃ V₄ C₅ PG
 q u r l n a

Prohibition of long vowels before consonant clusters is by no means a special feature of Classical Arabic. For instance, the same phenomenon occurs in Italian (Larsen 1998). It is correctly encoded by the generalisation stating that spreading of long vowels may occur only if its second part is licensed by Proper Government.²³

Returning to /dana-t(a)a/ as under (19b), the reason why [a] cannot spread is the same as the one preventing [u] from expanding in imp. pl 2f [in-qul-na]: its rightmost part fails to be properly governed.

5.5. Derived vs. simple perfectives

According to the analysis developed so far, the question arises why ephthoesis occurs in verbs with V₂ = [u,i] (sr = u-u and rD = i-a), but not in those with V₂ = [a] (dn = a-u, rm = o-i and nh = a-a). Consider the relevant forms under (22).

(22) pfact. pers. suffix danu=a-u runa=i-i saru=ma-u nharu=a-a raDi=ti-a
 sg 3 f l-i/ danat rmat sarwat nhat nahat raDiyat
 du 3 f l-i-a/ danatt ramatt sarwat nhat nhat raDiyat

While verbs with V₂ = [a] host the suffix /-i/ in C₃ for the reasons mentioned, verbs with V₂ other than [a] develop both an apophonic glide and ephthoesis. Why do we not have *ṣaru(aa)j and *raDi(tt)ajj?

We believe that [dana(aa)] on the one hand, as opposed to [saruwat(aa)] and [raDiyyat(aa)] on the other is correctly represented as (23b).

²¹ This generalization is challenged by a few lexical items only. To give an idea of the numeric proportions involved, we have examined the data contained in the Dictionary of Modern Written Arabic by Hans Woehl (1961). Namely, in deaf roots, a long vowel is awaited, which should occur before the geminated second root consonant in measure III and VI forms. However, out of 270 deaf roots, CVVCCV-clusters are derived only by ten roots in measure III forms (i.e. 3.70%, e.g. qatuS “to retaliate”), by nine roots in measure VI forms (i.e. 3.33%, e.g. taDaawma “to unite”), and by five roots in both measure III and measure VI forms (i.e. 1.85%, e.g. mawaa “to be in touch with”, hamaa “to touch each other”). This numeric situation clearly shows that the Grammar of Classical Arabic acts against this kind of cluster.

6.1. Deaf verbs

Deaf verbs demonstrate the split between verbs with $V_2 = /a, a/'$ vs. those showing [i,u] in V_2. Indeed, verbs of the md = a-u class lack V_2 which is straddled by the duplicated second radical. However, V_2 appears on the surface in verbs with $V_2 = /i,u/'$ that express a quality, a defect or a colour. (24) provides illustration of these.25

(24)

<table>
<thead>
<tr>
<th>$V_2 = /a, a/'$</th>
<th>$V_2 = /i,u/'$ quality, defect, colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>md madd-a ya-mudd-u</td>
<td>Hb Habib-a ya-Hbab-u</td>
</tr>
<tr>
<td>sm samm-a ya-samm-u</td>
<td>Hs Hasis-a ya-Hhas-u</td>
</tr>
<tr>
<td>ms mass-a ya-mass-u</td>
<td>dn danin-a ya-danin-u</td>
</tr>
<tr>
<td>mr mar-a ya-murr-u</td>
<td>Sm Samim-a ya-Samin-u</td>
</tr>
<tr>
<td>lb labb-a ya-lubb-u</td>
<td>IH laHiH-a ya-laHiH-u</td>
</tr>
<tr>
<td>qr garr-a ya-qarr-u</td>
<td>ms mašš-a ya-mašš-u</td>
</tr>
<tr>
<td>sl sall-a ya-sall-u</td>
<td>mh mašh-a ya-mašh-u</td>
</tr>
<tr>
<td>sb sabb-a ya-sabb-u</td>
<td>hs hašš-a ya-hašš-u</td>
</tr>
</tbody>
</table>

6.2. Semantic relations among verbs

It is traditionally argued that the second root-vowel denotes certain semantic properties of the verb in Classical Arabic. Roughly speaking, $V_2 = /a/'$ induces transitivity, while $V_2 = /i,u/'$ are found in intransitive verbs and those whose action is not a matter of choice of the subject. The latter subdivide into verbs with $V_2 = /i/'$ that express inherent and inalienable properties (e.g. kbr “be tall”) and those with $V_2 = /u/'$, which designate acquired properties or physical states subject to change (e.g. sqm “be ill”), Hzn “become sad”). Verbs with $V_2 = [i,u]$ may be subsumed under the label medipassive. Both modern authors and the Arabic Grammarians have identified this kind of semantically driven distribution of the second root-vowel.26

The arguments developed in the preceding section are valid only if it is true that verbs of the $sr = u-u$ and $rd = i-a$ classes, but not those with $V_2 = /a/'$, i.e. dn = a-u, rm = a-i and nh = a-a, are derived. The present section is designed to substantiate this claim.

25 See Chekayri (1994:99ff) for more detailed discussion. Glosses (left-to-right, up-down): “to extend, to be loved, to be loved, to put poison into some thing, to feel sympathy, to feel, to be round-shouldered, to pass/go’ walk, to become deaf, to hit with the fist, to have the eyelids stuck together, to settle down, to have an excessence (bodily), to pull out, to be soft, to abuse/insult, to be vile”.

& Lowenstamm (forth) have shown that the sense of a large number of verbs does not allow prediction of their root-vowel. Hence, the semantic relations mentioned must have controlled the verbal system of the language at some time anterior to the stage we know of. Classical Arabic speakers had no way of deducing the vowel from semantics, and thus the second root-vowel had to be part of the lexical representation of each verb at that time. This is the reason why we have referred to it as the lexical vowel all through this paper.

Apart from the widely acknowledged semantic properties of the second root-vowel, Bohas (1997), Bohas & Chekayri (1991, 1993), Chekayri (1994, 1997, 1998) have brought to light stable semantic relations holding between triliterals that differ only with respect to one consonant. Finally, Chekayri (1997, 1998) demonstrates the existence of a substantial number of verbs with $V_2 = /i, u/$ that have a partner which is identical in all respects except with regard to V_2. In these cases, V_2 is either /i/ or /u/, and the verb carries the mediopassive meaning. Consider the following pairs, many more of which can be found in Chekayri (1997, 1998).

(25)

<table>
<thead>
<tr>
<th>Perfective</th>
<th>ipf V_2</th>
<th>Active</th>
<th>Perfective</th>
<th>ipf V_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>?aban // i, u</td>
<td>flee from inhabited places</td>
<td>?aban // i, u</td>
<td>be inhospitable, unfrequented</td>
<td></td>
</tr>
<tr>
<td>?aww // i</td>
<td>enter sb's territory, invade sb</td>
<td>?asw // i</td>
<td>be threatened with the invasion of the enemy</td>
<td></td>
</tr>
<tr>
<td>?asid // i</td>
<td>abuse s.o.</td>
<td>?asid // i</td>
<td>be struck with fear</td>
<td></td>
</tr>
<tr>
<td>?asāb // i, u</td>
<td>to mix</td>
<td>?asāb // i, u</td>
<td>be mixed</td>
<td></td>
</tr>
<tr>
<td>?afān // i, u</td>
<td>depressive s.o. of wisdom</td>
<td>?afān // i, u</td>
<td>be stupid</td>
<td></td>
</tr>
<tr>
<td>?aqāt // i</td>
<td>season the food with cheese</td>
<td>?aqāt // i</td>
<td>be in abundance (cheese)</td>
<td></td>
</tr>
<tr>
<td>bałat // i</td>
<td>moisten, damp</td>
<td>bałat // i</td>
<td>become moisten, damp</td>
<td></td>
</tr>
<tr>
<td>bāzur // a</td>
<td>evaporate s.t.h.</td>
<td>bāzur // a</td>
<td>have unpleasant smell</td>
<td></td>
</tr>
<tr>
<td>baṣuq // a</td>
<td>blind s.o.</td>
<td>baṣuq // a</td>
<td>be one-eyed</td>
<td></td>
</tr>
<tr>
<td>baḥaṣ // i</td>
<td>make s.o. happy</td>
<td>baḥaṣ // i</td>
<td>be happy</td>
<td></td>
</tr>
<tr>
<td>bāṣuT // u</td>
<td>put s.o. at his ease</td>
<td>bāṣuT // u</td>
<td>be quite well off</td>
<td></td>
</tr>
<tr>
<td>habb // u</td>
<td>love</td>
<td>habb // u</td>
<td>be loved</td>
<td></td>
</tr>
</tbody>
</table>

It is natural to assume a derivational link between both members of these pairs: their semantics as well as their consonants are stable, they differ only with respect to V_2 and the opposition active vs. mediopassive. If the active member of such a pair has $V_2 = /i, u/$, its mediopassive correspondent shows [i], and if the former has /a/, the latter comes along with a [u]. These are both vocalic alternations which instantiate a perfect apophonie relation in the sense of (2). Semantically, it is not odd either to consider active verbs as the basic category, from which mediopassives are derived. In sum, the derivational link that has been evidenced simply points to an activity of lexical creation in pre-classical times that had recourse to apophony. Mediopassives were built on the basis of active verbs. And indeed, as was claimed earlier, mediopassives, that is verbs with $V_2 = /i, u/$, but not actives with $V_2 = /a, u/$, are derived, and their derivational syllable is therefore accessed. Figure (26) sums up diachronic and synchronic derivational relations in the Classical Arabic verb that employ apophony.

(26)

6.3. Stability of glides in imperfective forms of assimilated verbs

In section 2, we have stated that the glide of assimilated verbs does not appear in imperfective forms. In fact, this is true for verbs with $V_2 = /a, u/$ only. The glide is present in almost all verbs with $V_2 = /i, u/$. Consider the numerical proportions given under (27).27

(27)

$$
\begin{array}{c|c|c|c|c}
V_2 & \text{pf} & \text{synchronic derivation} & \text{ipf} & V_2 \\
\hline
\alpha & i & \alpha & i & \alpha \\
\hline
\text{diachronically} & \text{fundamental verbs} & \text{diachronic} & \text{derivation} & \text{diachronically} & \text{derived verbs} \\
\hline
\text{example} & \text{waṣaak} - ya-wṣāk & \text{waṣaak} - ya-wṣāk & \text{waṣaak} - ya-wṣāk & \text{waṣaak} - ya-wṣāk \\
\text{glide present in ipf} & 1 & 11 & 64 & 40 \\
\text{glide absent in ipf} & 205 & 43 & 12 & 2 \\
\text{example} & \text{waṣan} - ya-ṣān & \text{waṣan} - ya-ṣān & \text{waṣan} - ya-ṣān & \text{waṣan} - ya-ṣān \\
\end{array}
$$

27 Statistics are from Chekayri (1998), where a more elaborate presentation can be found. There are also cases where both forms with and without a glide are attested, e.g. waṣaṣa - ya-ṣaṣa and ya-wṣaṣa "hide". These are not included in the statistics shown. Glosses for table (column by column): "to be very hot, to weigh, to be brief/ concise, to sin/ err/ slip, to find, to give/ donate, to be angry, to be guilty, to be abundant, to be vile".
Thus, in 248 out of a total of 260 verbs with $V_2 = /\overline{a},\overline{u}/$, i.e. 95%, the glide is absent in imperfective forms. On the other hand, 104 verbs with $V_2 = /i,\overline{u}/$ out of 118 do present the glide in imperfective forms, that is 88%, against only 14 glideless verbs. This distribution is not fully complementary, but almost. In any event, it is significant enough to be regarded as non-accidental.

This result is in favour of our claim that verbs with $V_2 = /i,\overline{u}/$, but not those with $V_2 = /\overline{a},\overline{a}/$, are derived in the sense of the preceding section. Indeed, in our view, the glide is present in derived forms, while it is absent in basic verbs. This is exactly what is predicted by the existence of the derivational syllable: the extra C vowel is accessible when a derivation has been performed, while it is improper for segmental identification in non-derived forms. Hence, the following representations explain, explaining the presence vs. absence of the glide.\(^{28}\)

\[(28)\]

\[
\begin{align*}
\text{a. basic verb: } & C \ V \ \text{does not seek} \\
& C \ V \\
& C_1 \ V \ C_2 \ V_1 \ C_3 \ V_2 \ C_4 \ V_3 \\
\hline
& y a \ z i n \\
& y a \ j u d \\
\end{align*}
\]

6.4. Augmented forms

In all augmented forms, assimilated verbs behave as ordinary sound trilliters. That is, in forms II–XV, the glide is always present, cf. pf act. II wazzan, III wazzan, etc. Whatever the reason for this fact, it shows that the derivational status is an important factor for the appearance of the glide. Namely, in forms II–XV, which are uncontroversially derived, the glide is always present, while it may (verbs with $V_2 = /i,\overline{u}/$) or may not (verbs with $V_2 = /\overline{a},\overline{a}/$) be present in imperfective form I. If one was to state in which forms the glide is stable, the correct answer would be "in all heavily derived forms", that is either if a derivation of morphological value has been performed (forms II–XV) or if the item was doubly derived (imperfective forms of verbs with $V_2 = /i,\overline{u}/$). This generalisation is missed unless verbs with $V_2 = /i,\overline{u}/$, against those with $V_2 = /\overline{a},\overline{a}/$, are granted a derived status.

\[^{28}\text{The status of the derivational syllable regarding segmental identification in fact is threefold: 1) in non-derived forms, it is inaccessible, as in pf wazzan. 2) in forms that were subject to one single derivation, e.g. perfective \rightarrow imperfective, it may be accessed if segmental material would otherwise remain unaccommodated, as in ipf ya-ktub. Unlike the latter, ipf ya-zin presents only three consonants. Hence, the contribution of the derivational syllable is not needed, and the glide is not created. 3) in doubly derived forms, the derivational syllable must be identified. Imperfective forms of verbs with $V_2 = /i,\overline{u}/$ are derived from active verbs. In addition, they were subject to the imperfective-derivation. Hence, the glide must be created in order to identify } C \ V.\]
THE APPEARANCE OF GLIDES IN CLASSICAL ARABIC DEFECTIVE VERBS

Arabic sources

Ute Pietruschka

Martin-Luther-Universität, Halle-Wittenberg

DIE ERSTEN MUSLIME IN AKSUM — FRÜHE ARABISCHE BERICHTET NEU BETRACHTET1

Zur Geschichte des Aksumitischen Reiches ab dem 6./7. Jahrhundert besitzen wir nur spärliche Informationen aus einheimischen Quellen. Der Rückgriff auf außer-äthiopische Quellen ist zur Erhellung dieses Zeitraumes unumgänglich, und der Einzuge werden ab dem 7. Jahrhundert arabisch-historische Quellen für unser Interessengebiet relevant. In der Sekundärliteratur2 zur aksumitischen Geschichte werden diese historischen Quellen vielfach zitiert; den jeweiligen Autoren ist, in unterschiedlicher Weise, bewusst, dass diese Quellen mit einer gewissen Vorsicht zu behandeln sind. Dass die arabischen Geschichtsschreibung glaubwürdige wie unglaubwürdige Berichte tradierte, war schon mittelalterlichen Autoren klar gewesen, sie trugen dem Rechnung, indem sie (wie z.B. at-Tabar) sich widersprechenden Traditionen nebenianderstellten und dem Leser die Entscheidung überließen, welche der Informationen die „richtige“ sei.

Die Aufgabe des Historikers besteht nun darin, die äußeren Schichten der literarischen Ausschmückung oder der puren Fiktion zu entfernen, um so zum „historischen Kern“ der Überlieferung vorzudringen, was aber oftmals eine kaum zu lösende Aufgabe ist. Der Historiker hat zu entscheiden — aus chronologischen oder logischen Gründen —, welche Nachricht in welchem Kontext die „ursprüngliche“ ist, stößt dabei aber schnell auf Grenzen.
