Why Moroccan Arabic tolerates anything word-initially, but Slavic does not

(1) Typology of word-initial clusters (T=Obstruent, R=Sonorant), e.g. Clements (1990)

		#CV	#TR	#RT	example
a.	#CV-only	yes	no	no	e.g. Ticuna (native indian, Colombia)
b.	#TR-only	yes	yes	no	English, French etc.
c.	#RT-only	yes	no	yes	does not exist
d.	#TR and #RT	yes	yes	yes	modern occidental Semitic, Berber, Slavic

- (2) problems
 - a. syllabic theory was built in the 70's and 80's on the sole basis of #TR-only languages, i.e. the typical IE pattern.

==> Sonority Sequencing: "within a branching Onset, sonority increases (must increase)"

- b. what about #TR-and-#RT languages? Two possible solutions:
 - 1. Sonority Sequencing does not operate in these languages, i.e. anything is a good branching Onset. ==> the properties of syllabic constituents are not universal, they are distributed accidentally over languages.
 - 2. there are no branching Onsets in these languages, they are underlyingly CVCV supported by semitic morphology
- c. if Sonority Sequencing did not operate in #TR-and-#RT languages, there would be no Coda-Onset sequences because any CC is a good branching Onset ("if you want to know which cluster is a good branching Onset, look at initial clusters"). A language with branching Onsets but no Codas is contrary to typological implications: branching Onset ==> Coda, not the reverse. Hence, CVCV.
- d. in any case, the theory is unable to say why #TR-only languages are possible, but not #RT-only languages, rather than the reverse.
- (3) goals
 - a. build a theory that accounts for #TR-and-#RT languages without releasing any of the principles driving #TR-only languages.
 - b. predict that #RT-only languages may not exist.
 - c. non-circularity: achieve b) without simply implementing what we observe word-initially.

For #TR-only languages, why does the constraint say "within a branching Onset, sonority increases (must increase)" rather than the reverse? Because we observe that in these languages, it always does. This theory can do as well with a putative world where #RT-only languages do exist, but #TR-only languages do not. Build a theory that is unable to describe this kind of anti-world.

d. Slavic and Moroccan Arabic are both #TR-and-#RT languages, but still very different. Characterise this difference and understand it.

- (4) tools (Government Phonology)
 - a. CVCV
 - b. Government (Proper and Infrasegmental)
 - c. Licensing
 - d. # = CV
- (5) CVCV (Lowenstamm 1996, Scheer 1998, 1999, 2000)

syllable structure boils down to a strict sequence of non-branching Onsets and nonbranching Nuclei. Hence, the following representations for basic phonological objects ensue:

closed syllable	geminate	long vowel	[C#]	branching Onset
ΟΝΟΝ	ΟΝΟΝ	ΟΝΟΝ	O N	ΟΝΟΝ
CVCØ	C V	C V	C ø #	ΤøRV

- (6) Phonological Empty Category Principle (Kaye et al. 1990, Scheer 1998,1999) an empty Nucleus may be phonetically unexpressed iff it is
 - a. properly governed, or
 - b. enclosed within a domain of Infrasegmental Government, or
 - (c. final)
- (7) Proper Government (PG) drives vowel-zero alternations (Kaye et al. 1990, Scheer 1997, 1998)
 - e.g. Czech *loket* "elbow"

a. lokøt-e GENsg b. loket-ø NOMsg c. loket-ní adj.

(8) Infrasegmental Government (IG) (Scheer 1996,1999)
a consonant A may govern infrasegmentally another consonant B iff
1. A is more complex than B (Harris 1990) and
2. A is licensed to do so (Charette 1990)
against the standard view, Sonorants are more complex than Obstruents.
Illustration: optional syncope of schwa in French *secret* "secret": PG

reaches schwa under b) because [k] and [r] interact and thus satisfy the ECP of N_2 .

(9) # = CV (Lowenstamm 1999, Ségéral&Scheer in press) idea: morphological information enjoys a truly phonological identity in Phonology (Scheer 2000). Diacritics such as "#", "+" have no scientific status anyway, we could as well have eggs and apples in phonological theory. At best, they are variable whose identity is not understood.

Proposal: the phonological identity of the left margin of a word is an empty [CV] unit.

(10) Word-initial situation:

#RT is ruled out because, as may be seen under b), R is necessarily unlicensed because its Nucleus is empty. Therefore, it cannot interact with T, and N_{\odot} calls for PG from V, which is unable to govern both V_1 and N_{\odot} .

a. well-formed structure: #TR b. ill-formed structure: #RT

- (11) a. Hence, are #TR-and-#RT languages predicted not to exist? No, the existence of #RT clusters in a language implies the absence of the initial [CV].
 - b. There is nothing wrong with the initial [CV] being sometimes present and sometimes absent: we know that the injection of morphological information into Phonology is an idiosyncratic matter of languages or even affixes: some suffixes build analytic phonological domains, others do not.
 - c. prediction if there is no initial [CV]: the distribution of word-initial clusters is free, since the empty Nucleus under d) is always governed by the first vowel of the word.
 - d. #TR-only: presence of the initial [CV] e. #TR-and-#RT: absence of the initial [CV]

(12) Typology predicted:

- phonological properties
- a. #CV-only no empty Nuclei occur
- b. #TR-only presence of the initial [CV]
- c. #RT-only
- d. #TR and #RT absence of the initial [CV]

#RT-only languages are predicted not to exist because the presence of #RT-clusters implies the absence of the initial [CV]. This, in turn, releases any restriction on word-initial clusters. Hence, you can't get #RT without #TR (=absence of the initial [CV]), but you can get #TR without #RT (=presence of the initial [CV]).

(13) benefits

- a. typology is predicted by a simple paramter setting: presence vs. absence of the initial [CV]
- b. this parameter setting does not harm any of the theoretical generalisations that explain the absence of #RT clusters in #TR-only languages
- c. it is not circular: none of the tools implied have been build on the basis of wordinitial data: Proper Government, Infrasegmental Government, Licensing, CVCV.
- (14) a. Comparison of two #TR-and-#RT languages:

modern occidental Semitic, e.g. Moroccan Arabic and Slavic

b. The prediction made under (11)e is borne out in Moroccan Arabic: the distribution of #CC is free. Any sequence of two consonants that exist in this language may be observed word-initially, and the mirror sequence occurs as well.

#TR	#RT	
brid	rbiT	cool down, bind
Drib	rDa	hit, accept
gliî	lga	remove, find
bka	kbir	cry, grow larger
nzil	zna	descend, commit adultery
dna	ndim	come near, regret
bqa	qbil	stay, accept

- (15) a. In Slavic, only a small subset of logically possible initial sequences do occur.
 - b. the existing vs. unattested initial clusters do not appear to reduce to any regularity, nor do they constitue a natural class according to whatever criterion (sonority etc.). This is a classical problem of Slavic phonology, especially in the Polish tradition, cf. Kuryłowicz (1952), Cyran&Gussmann 1998,1999).
 - c. I have tried to collect all words that bear an initial Sonorant-Obstruent cluster in all Slavic languages. The result is certainly to be amended, but it gives an idea of the situation: a total of 47 roots possess #RT-occurrences.
 The entire table showing the detail of 14 modern Slavic languages is available upon request.

(16	5)	Common	#RT	gloss CS	modern	(1	6)	Common	#RT	gloss CS	modern
		Slavic			example		/	Slavic			example
j	1	j-∖-dọ	jd	walk 1sg	Cz jdu	l	26	lXb-	lb	skull	Cz lbi (GENsg)
	2	j∖go	jh	yoke	Cz jho		27	1Xg-ati	lg	lie inf	Cz lhát
	3	j∖m	jm	seize	Cz jmout		28	l∖g-	lg	light	Cz lhostejný
	4	\n-	jm	name	Cz jméno		29	1 X k	lk	mourn	Cz lkát
	5	j-es-m∖	js	be 1sg	Cz jsem		30	l\p-	lp	cling, stick	Cz lpět
r	6	štrXbX	rb	fragment	S-Cr rbina		31	l∖sk-	ls	shine,	Cz lštíti se
	7	r X badiga	rb	Herbaticum	Cr rbadiga					twinkle	
	8	r∖k	rc	say, imper	Cz arch rci !		32	1\st\	ls	cunning, ruse	Cz lsti (GENsg)
	9	uncortain	۳Ă	2sg	S. Cr. nčola		33	l\v\	lv	lion GENsg	Cz lva (GENsg)
	10		rc l		S-Cr reak		34	sl∖z	lz	tear	Pol łza
	10	r x a	ra	go red, Hush	Cz rait se		35	lXž-	lž	spoon	Cz lžíce
	11	str∖za	rd	core,	Pol rdzeń	m	n ³⁶	mXd-lX	md	faint, weak	Cz mdlý
	12	gXr(t)+dusi	rd	strangle.	Cz rdousit		37	mXchX	mch	moss	Cz dial mšina
		ti		choke			38	mXk	mk	sudden	Pol mknąć
	13	r X dXky	rd	radish	S-Cr rdakva					movement	-
	14	rufijanX	rf	procurer,	Sle rfjan					yielding an	
				pimp						unforeseen	
	15	rusX	rs	yellow,	Sle rsa		39	m\t-t\	ms	revenge	Cz msta
	16	rV to	rt	blond	Due rto		40	mXstX	ms	must, fruit	Cz arch mstu
	17	1 A ld	11 t	auiolusiluse	Ca atut!					juice GENsg	
	17	$\mathbf{r}_{\mathbf{X}}(\mathbf{A}),$	n	quicksilver	Cz nui		41	mXtX	mt	gym swing	Cz arch mtu
	18	r X t	rt	peak, point	Cz rty (NOMpl)		42			GENsg	
	19	rXvati	rv	tear. rip.	Cz rvát		42	m∖zda	mz	salary	Cz mzda
		111 v uti	- '	snatch			43	mXzg-	mz	spoil	Rus mzgnut'
	20	rXjǫ	rv	dig	Cz rva (GENsg)		44	m∖ša < lat	mš	mass	Cz mše
	21	rjuti	řv	roar, scream	Cz řvát		45	missa m V šica	mč	greenfly	Cz měice
	22	rXž∖	rž	rye	Cz rži		.5	masica	1115	aphid	
	23	rXzati	rž	neigh,	Cz ržát		46	m∖chelX	mš	earnings,	Rus mšelX
				whinny						profit	
	24	drXg-	rž	tremble	U-Sor ržeć		47	m∖g-	mg	fog	Cz mhlavý
	25	rěz-	rž	cut	Pol rżnąć						

(17)	diachronic origin of modern Slavic #RT clusters							
	#RT	nb roots < #	RvT	uncertain origin				
		< #RyerT	<#RvT					
	#jC	4	1 (5 j-es-m\)					
	#rC	15	4 (14 rufijan\ 15 rusX 21 rjuti 25 rez)	1 (9 s-cr rčak)				
	#lC	10	0					
	#mC	12	0					
		41	5	1	Total 47			

(18) diachronic generalisation all Slavic #RT < #RvT (19) the same holds true for Moroccan Arabic:

diachronic correspondence: VV > VV > i

in sequences of successive schwas, every other is zero, counting from the left, cf. Amini (1997), Amimi&Bohas (1996)

- (20) comparison Semitic Slavic
 - a. in both cases, **all** #RT < #RvT
 - b. in the evolution towards Moroccan Arabic, ALL short vowels were centralised and further started to alternate with zero. In the pf active paradigm of Classical Arabic, the first vowel is always [a], i.e. the active morpheme. Hence, ALL first vowels fell out in this form, producing adjacency of C_1 and C_2 .
 - c. in Common Slavic, there were 11 vowels. Only two of them, the "soft" and the "hard" yer [$\]$ et [X], have been centralised and further started to alternate with zero.
 - d. hence, assuming a ponderated distribution of those 11 vowels in the environment $\#C_V$, 2/11 of the Slavic lexicon was subject to $\#C_1 \text{yer}C_2 > \#C_1C_2$. Assuming a ponderated distribution of CS #TyerT, #TyerR, #RyerR and #RyerT, one fourth of those were #RyerT. Hence, 1/22 of the lexicon are the 47 roots mentioned, which supposes a total of 1034 roots in CS, a number which seems reasonable.
- (21) results
 - a. MA and Slavic are #RT-and-#TR languages that were #TR-only languages before (true for other #RT-and-#TR languages, or for all of them?)
 - b. the diachronic change that has occurred between the former and the modern stage is the loss of the initial [CV] (where it is not clear whether the initial [CV] was lost because the plain vowels were centralised and started to fall out, or these vowels could start to alternate with zero because the initial [CV] was lost)
 - c. the number of #RT clusters and the identity of R and T are accidental, they depend on the centralisation-process: all vowels are centralised ==> everything is possible (Moroccan Arabic) only 2 vowels are centralised ==> C_1 and C_2 of an arbitrary subset of roots are put into contact (Slavic).
 - d. hence, the distribution of initial #RT in modern Slavic is simply the reflex of the distribution of yers in CS. The key to initial #RT clusters in Slavic is a lexical property, and no phonological conditioning (natural classes etc.) is expected. This expectation meets the facts.

Ex.: there is not a single word in Slavic where [n] is followed by an Obstruent: *nT vs. ok jT, IT, rT, mT. Reason: there was no IE root *niT,*nuT that has survived in Slavic (IE i,u > CS yers), cf. Pokorny (1959).

e. Slavic grammar does not object to any possible initial sequence. Hence, prediction: new words that instantiate #RT clusters that are unknown may enter the language. Possible source for new #RT words: acronyms. Test in Czech:

(22)	a.	ČVUT	České vysoké učení technické
	b.	LFUK	Lekařská Fakulta University Karlova
	c.	JČU	Jihočeská Universita
	d.	JSA	Jazyk symbolických adres
	e.	LFOP	Lidová Fronta pro Osvobození Palestiny
	f.	LSU	Liberální Sociální Unie
	g.	LŠU	Lidová Škola Umnění

References

- Amimi, Abdeljabber 1997. Contribution a l'étude de la phonologie et du lexique des parlers marocains. These de Doctorat, Université Paris 8.
- Amimi, Abdeljabber & Georges Bohas 1996. Les formes nominales [CeCC] et [CCeC] en arabe marocain ou la persistance des schèmes. Revue canadienne de linguistique **41**, 1-28.

Charette, Monik 1990. Licence to govern. Phonology Yearbook 7.2, 233-253.

- Clements, George N. 1990. The role of the sonority cycle in core syllabification. Papers in Laboratory Phonology I, édité par J.Kingston & M.Beckmann, 283-333. Cambridge: Cambridge University Press.
- Cyran, Eugeniusz & Edmund Gussmann 1998. Polish consonantal sequences: a phonological testing ground. Structure and Interpretation, édité par Eugeniusz Cyran, 127-138. Lublin: Pase.
- Cyran, Eugeniusz & Edmund Gussmann 1999. Consonant clusters and governing relations: Polish initial consonant sequences. The syllable, Views and Facts, édité par Harry van der Hulst & Nancy Ritter, 219-248. Berlin, New York: de Gruyter.
- Harris, John 1990. Segmental complexity and phonological government. Phonology Yearbook **7.2**, 255–300.
- Kaye, Jonathan, Jean Lowenstamm & Jean-Roger Vergnaud 1990. Constituent structure and government in phonology. Phonology Yearbook **7.2**, 193-231.
- Kuryłowicz, Jerzy 1952. Uwagi o polskich grupach spółgłoskowych [Remarks on Polish consonantal groups]. Biuletyn Polskiego Towarzystwa Językoznawczego **11**, 54-69.
- Lowenstamm, Jean 1996. CV as the only syllable type. Current trends in Phonology. Models and Methods, édité par Jacques Durand & Bernard Laks, 419-441. Salford, Manchester: ESRI.
- Lowenstamm, Jean 1999. The beginning of the word. Syllables?!, édité par John Rennison & Klaus Kühnhammer, 153-166. La Hague: Holland Academic Graphics.
- Pokorny, Julius 1959. Indogermanisches Etymologisches Wörterbuch, 3^e édition 1994. Tübingen, Basel: Francke.
- Scheer, Tobias 1996. Une théorie de l'interaction directe entre consonnes. Thèse de doctorat, Université Paris 7.
- Scheer, Tobias 1997. Vowel-zero alternations and their support for a theory of consonantal interaction. Certamen Phonologicum III, édité par P.M.Bertinetto, L.Gaeta, G.Jetchev et D.Michaels, 67-88. Torino: Rosenberg & Sellier.
- Scheer, Tobias 1998. A unified model of Proper Government. The Linguistic Review **15**, 41-67.
- Scheer, Tobias 1999. A theory of consonantal interaction. Folia Linguistica 32, 201-237.
- Scheer, Tobias 2000. De la localité, de la morphologie et de la phonologie en phonologie. Thèse d'Habilitation, Université de Nice.
- Ségéral, Philippe & Tobias Scheer in press. The Coda Mirror. To appear in the Bulletin de la Société Linguistique de Paris.